Search results

Search for "PDMS substrate" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • film deposited on a microstructured polydimethylsiloxane (PDMS) substrate [21]. The sensor exhibits exceptional strain sensitivity, allowing for stretching of up to 20% strain. Liu et al. have successfully developed a strain sensor that exhibits high-performance characteristics [22]. A fish-scale-like
  • sensor that exhibits both high sensitivity and a wide range of strain through the combined integration of a cracked thin metal and a 3D helical substrate. The fabrication process involves depositing a Au thin film onto a PDMS substrate with helical structure, followed by pre-stretching to induce
  • Figure S1 (Supporting Information File 1). These cracks serve to separate the conductive medium of the metal layer from the PDMS substrate, thereby influencing the width of the conductive tunnels and the mode of conduction. Widening of the cracks and a decrease of conductive paths occur when tension is
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Nanogenerator-based self-powered sensors for data collection

  • Yicheng Shao,
  • Maoliang Shen,
  • Yuankai Zhou,
  • Xin Cui,
  • Lijie Li and
  • Yan Zhang

Beilstein J. Nanotechnol. 2021, 12, 680–693, doi:10.3762/bjnano.12.54

Graphical Abstract
  • deployment and maintenance of sensors will bring challenges for intelligent transportation systems. PENGs/TENGs can gain energy from vibrations without the need for an energy grid. In 2013, Lin et al. [3] proposed a transparent and flexible PENG (TFNG) based on a flexible polydimethylsiloxane (PDMS
  • ) substrate and ZnO NWs. It could be deployed on the road for speed and weight detection, as well as collecting mechanical energy from rolling wheels to power a LCD. Figure 6c shows the output voltage signal when the wheel runs over the TFNG. The output of TFNG has good durability, as shown in Figure 6d. The
PDF
Album
Review
Published 08 Jul 2021

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • , a new problem emerges: the direct coating methods are unable to load catalysts firmly and uniformly on the PDMS substrate. Zhang et al. proposed a new casting transfer method for loading catalysts on the PDMS substrate [36], as shown in Figure 5. This method exhibited critically higher durability
  • catalyst-coated micropillars. Reprint with the permission from [74], copyright 2014 Elsevier Ltd. (A) Schematic of the high-surface-area optofluidic microreactor with micro-grooved structure. (B) Fabrication procedure of the optofluidic microreactor with the catalysts on the PDMS substrate. Adapted from
PDF
Album
Review
Published 04 Jan 2018

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • master imaged by SEM in Figure 1A. The remaining images in Figure 1F–H demonstrate the same characteristics; the protruding regions in each AFM height map of post-lift-off PDMS corresponded directly to the raised Au features on the related Au-on-Si masters. Thus, the PDMS substrate was patterned by the
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates

  • Jingran Zhang,
  • Yongda Yan,
  • Peng Miao and
  • Jianxiong Cai

Beilstein J. Nanotechnol. 2017, 8, 2271–2282, doi:10.3762/bjnano.8.227

Graphical Abstract
  • nanoimprinting process and coating process on the final topography of the structures are studied. The experimental results show that the Raman intensity of the Au-film-coated PDMS substrate is influenced by the topography of the micro/nanostructures and by the thickness of the Au film. The Raman intensity of
  • 1362 cm−1 R6G peak on the structured Au-film-coated PDMS substrate is about 8 times higher than the SERS tests on a commercial substrate (Q-SERS). A SERS enhancement factor ranging from 7.5 × 105 to 6 × 106 was achieved using the structured Au-film-coated PDMS surface, and it was demonstrated that the
  • method proposed in this paper is reliable, replicable, homogeneous and low-cost for the fabrication of SERS substrates. Keywords: micro/nanopyramid; nanoimprinting; PDMS substrate; rhodamine 6G; SERS; Introduction Surface enhanced Raman spectroscopy (SERS) is a prominent, highly analytical tool for the
PDF
Album
Full Research Paper
Published 01 Nov 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • % sample measurement points from 15 to 20% could not be acquired because the sample ruptured at 15%. In this sample, air bubbles were trapped in the PDMS substrate because of insufficient degassing in the fabrication. Due to the air bubbles, the PDMS substrate was significantly thinner and could not
  • from 3M) was added. This results in an even lower contact angle between the solution and the PDMS substrate. The mixture is stirred for 5 min (Figure 6b1). The PDMS membranes are clamped to an appropriate spin coating chuck we designed for the specific geometry of our membranes. To avoid ripples in the
  • nanoparticles (b1–b3). a4) shows the mold for the PDMS substrate and b4) shows a completed photonic crystal membrane on which the grating reflections are visible. Cross-section of a 400 nm grating on a PDMS membrane with a particle layer created by a 6 wt % solution viewed with a scanning electron microscope
PDF
Album
Full Research Paper
Published 20 Jan 2017

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • elastomer like poly(dimethylsiloxane) (PDMS) strain can be applied on the substrate. Due to the rigidity and fragility of the layer formed on the top of the elastic PDMS substrate, an array of parallel cracks perpendicular to the strain direction will be formed. Depending on the strain, its direction, and
PDF
Album
Review
Published 08 Nov 2016

Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane

  • Juan Carlos Castro Alcántara,
  • Mariana Cerda Zorrilla,
  • Lucia Cabriales,
  • Luis Manuel León Rossano and
  • Mathieu Hautefeuille

Beilstein J. Nanotechnol. 2015, 6, 744–748, doi:10.3762/bjnano.6.76

Graphical Abstract
  • materials, obtained with a Raman microscope with a 532 nm laser of (Thermo Scientific DXR), showed that the layers obtained with the CVD technique are very different from that of a pristine PDMS substrate, as seen in Figure 2. In both cases, the D (ca. 1350 cm−1) and G (ca. 1598 cm−1) bands, characteristics
PDF
Album
Full Research Paper
Published 16 Mar 2015

Influence of the PDMS substrate stiffness on the adhesion of Acanthamoeba castellanii

  • Sören B. Gutekunst,
  • Carsten Grabosch,
  • Alexander Kovalev,
  • Stanislav N. Gorb and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2014, 5, 1393–1398, doi:10.3762/bjnano.5.152

Graphical Abstract
  • -81, Olympus, Japan) for each PDMS substrate and for the control substrate (sterile 6-well plate, Sarstedt, Nümbrecht, Germany) by using a digital camera (C-9300, Hamamatsu, Japan). The experiments were carried out on three different days (on each day in triplicate). Cell numbers and areas were
PDF
Album
Full Research Paper
Published 28 Aug 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • for pure titania). The reduced compliance arising from the presence of the PDMS substrate is thus a key factor in wear reduction. Furthermore, the PDMS is below its glassy transition so there is little internal friction. Under this model, the polymer serves as a cushion, which reduces the local
  • (Figure 10b, inset), whereas on PDMS, the deformation is much more extensive, due to the large deformation within the PDMS substrate (Figure 10a, inset). These differences are reflected in the stress profiles. For a silicon substrate the lack of deformation results in very little tensile stress in the
  • titania film. However, there is significantly larger and more spatially extensive compressive stress within the substrate (Figure 10b). This leads to delamination of the film. For the compliant PDMS substrate, the extensive deformation results in larger tensile stress within the film, and at the film
PDF
Album
Full Research Paper
Published 10 Jul 2014
Other Beilstein-Institut Open Science Activities